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Being Bayesian About Network Structure 
A Bayesian Approach to Structure Discovery in Bayesian Networks 

NirFriedman (nir@cs.huji.ac.il) 
School of Computer Science & Engineering 
Hebrew University 
Jerusalem, 91904, Israel 

Daphne KoUer (koller@cs. Stanford. edu) 
Computer Science Department 
Stanford University 
Stanford, CA 94305-9010 

Abstract. In many domains, we are interested in analyzing the structure of the underlying 
distribution, e.g., whether one variable is a direct parent of the other. Bayesian inodel selection 
attempts to find the MAP model and use its structure to answer these questions. However, 
when the amount of available data is modest, there might be many models that have non- 
negligible posterior. Thus, we want compute the Bayesian posterior of a feature, i.e., the total 
posterior probability of all models that contain it. In this paper, we propose a new approach 
for this task. We first show how to efficiently compute a sum over the exponential number 
of networks that are consistent with a fixed order over network variables. This allows us to 
compute, for a given order, both the marginal probability of the data and the posterior of a 
feature. We then use this result as the basis for an algorithm that approximates the Bayesian 
posterior of a feature. Our approach uses a Markov Chain Monte Carlo (MCMC) method, 
but over orders rather than over network structures. The space of orders is smaller and more 
regular than the space of structures, and has much a smoother posterior "landscape". We 
present empirical resvilts on synthetic and real-life datasets that compare our approach to full 
model averaging (when possible), to MCMC over network structures, and to a non-Bayesian 
bootstrap approach. 

Keywords: Bayesian Networks, Structure Learning, MCMC, Bayesian Model Averaging 

Abbreviations: BN - Bayesian Network; MCMC - Markov Chain Monte Carlo 

1. Introduction 

In the last decade there has been a great deal of research focused on the prob- 
lem of learning Bayesian networks (BNs) from data (Buntine, 1996; Heck- 
erman, 1998). An obvious motivation for this problem is to learn a model 
that we can then use for inference or decision making, as a substitute for a 
model constructed by a human expert. In certain cases, however, our goal is to 
learn a model of the system not for prediction, but for discovering the domain 
structure. For example, we might want to use Bayesian network learning to 
understand the mechanisms by which genes in a cell produce proteins, which 
in tum cause other genes to express themselves, or prevent them from doing 
so (Friedman et al., 2000). In this case, our main goal is to discover the 
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2 Friedman & Roller 

causal and dependence relations between the expression levels of different 
genes (Lander, 1999). 

The most common approach to discovering structure is to use learning 
with model selection to provide us with a single high-scoring model. We then 
use that model (or its Markov equivalence class) as our model for the structure 
of the domain. Indeed, m small domains with a substantial amount of data, it 
has been shown that the highest scoring model is orders of magnitude more 
likely than any other (Heckerman et al, 1997). In such cases, the use of model 
selection is a good approximation. Unfortunately, there are many domains of 
interest where this situation does not hold. In our gene expression example, it 
is now possible to measure of the expression levels of thousands of genes in 
one experiment (Lander, 1999) (where each gene is a random variable in our 
model (Friedman et al, 2000)), but we typically have only a few hundred of 
experiments (each of which is a single data case). In cases, like this, where 
the amount of data is small relative to the size of the model, there are likely to 
be many models that explain the data reasonably well. Model selection makes 
a somewhat arbitrary choice between these models, and therefore we cannot 
be confident that the model is a true representation of the underlying process. 

Given that there are many qualitatively different structures that are ap- 
proximately equally good, we cannot learn a unique structure from the data. 
Moreover, in many learning scenarios there are exponentially many structures 
that are "reasonably" good given the data. Thus, enumerating these structures 
is also impractical. However, there might be certain features of the domain, 
e.g., the presence of certain edges, that we can extract reliably. As an extreme 
example, if two variables are very strongly correlated (e.g., deterministically 
related to each other), it is likely that an edge between them will appear in 
any high-scoring model. In many discovery problems, extracting these struc- 
tural features is of great interest. Bayesian learning allows us to estimate the 
strength with which the data indicates the presence of a certain feature. The 
Bayesian score of a model is simply its posterior probability given the data. 
Thus, we can estimate the extent to which a feature, e.g., the presence of an 
edge, is likely given the data by estimating its probability: 

P{f\D) = Y,P{G\D)f{G\ (1) 
G 

where /(G) is 1 if the feature holds in G and 0 otherwise. If this probability 
is close to 1, then almost any high-scoring model contains the feature . On 
the other hand, if the probability is low, we know that the feature is absent in 
the most likely models. 

The number of BN structures is super-exponential in the number of ran- 
dom variables in the domain; therefore, this summation can be computed in 
closed form only for very small domains, or those in which we have additional 
constraints that restrict the space (as in (Heckerman et a!., 1997)). Altema- 
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Being Bayesian About Network Structure 3 

tively, this summation can be approximated by considering only a subset of 
possible structures. Several approximations have been proposed (Madigan 
and Raftery, 1994; Madigan and York, 1995). One theoretically well-founded 
approach is to use Markov Chain Monte Carlo (MCMC) methods: we define 
a Markov chain over structures whose stationary distribution is the posterior 
P{G 1D), we then generate samples from this chain, and use them to estimate 
Eq. (1). This approach is quite popular, and variants have been used by Madi- 
gan and York (1995), Madigan et al. (1996), Giudici and Green (1999), and 
Giudici et al. (2000). 

In this paper, we propose a new approach for evaluating the Bayesian 
posterior probability of certain structural network properties. Our approach 
is based on two main ideas. The first is an efficient closed form equation for 
simmiing over all networks with at most k parents per node (for some constant 
k) that are consistent with a fixed order over the nodes. This equation allows 
us both to compute the overall probability of the data for this set of network- 
s, and to compute the posterior probability of certain structural features — 
edges and Markov blankets— over this set. The second idea is the use of an 
MCMC approach, but over orders of the network variables rather than directly 
on BN structures. 

The space of orders is much smaller than the space of network structures; 
it also appears to be much less peaked, allowing much faster mixing (i.e., 
convergence to the stationary distribution of the Markov chain). We present 
empirical results illustrating this observation, showing that our approach has 
substantial advantages over direct MCMC over BN structures. The Markov 
chain over orders mixes much faster and more reliably than the chain over 
network structures. Indeed, different runs of MCMC over networks typically 
lead to very different estimates in the posterior probabilities of structural fea- 
tures, illustrating poor convergence to the stationary distribution; by contrast, 
different runs of MCMC over orders converge reliably to the same estimates. 
We also present results showing that our approach accurately detects dom- 
inant features even with sparse data, and that it outperforms both MCMC 
over structures and the non-Bayesian bootstrap approach of Friedman et al. 
(1999a). 

2.  Bayesian learning of Bayesian networks 

2.1. THE BAYESIAN LEARNING FRAMEWORK 

Consider the problem of analyzing the distribution over some set of random 
variables X\,... ,X„, based on a fully observed data set D = {x[l],... ,x[M]}, 
where each \[j] is a complete assignment to the variables Xi,... ,X„. 

The Bayesian learning paradigm tells us that we must define a prior prob- 
ability distribution P(!B) over the space of possible Bayesian networks S. 
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4 Friedman & KoUer 

This prior is then updated using Bayesian conditioning to give a posterior 
distribution P(!S I D) over this space. 

For Bayesian networks, the description of a model !B has two components: 
the structure G of the network, and the values of the numerical parame- 
ters 9G associated with it. For example, in a discrete Bayesian network of 
structure G, the parameters 9G define a multinomial distribution 9x(|u for 
each variable X,- and each assignment of values u to PaciXi). If we consider 
Gaussian Bayesian networks over continuous domains, then 0x,.|u contains the 
coefficients for a linear combination of u and a variance parameter. 

To define the prior P{'B), we need to define a discrete probability distri- 
bution over graph structures G, and for each possible graph G, to define a 
density measure over possible values of parameters Go- 

The prior over structures is usually considered the less important of the 
two components. Unlike other parts of the posterior, it does not grow as the 
number of data cases grows. Hence, relatively little attention has been paid 
to the choice of structure prior, and a simple prior is often chosen largely for 
pragmatic reasons. The simplest and therefore most common choice is a uni- 
form prior over structures (Heckerman, 1998). To provide a greater penalty 
to dense networks, one can define a prior using a probability P that each edge 
be present; then networks with m edges have prior probability proportional to 

P'"(l - ^)\v~'" (Buntine, 1991). An alternative prior, and the one we use in 
our experiments, considers the number of options in determining the families 
of G. Intuitively, if we decide that a node Xj has k parents, then there are ("^') 
possible parents sets. If we assume that we choose uniformly from these, we 
get a prior: 

nC""' V'. 
Note that the negative logarithm of this prior corresponds to the description 
length of specifying the parent sets, assuming that the cardinality of these 
sets are known. Thus, we implicitly assume that cardinalities of parent sets 
are uniformly distributed. 

A key property of all these priors is that they satisfy: 

-   Structure modularity The prior P{G) can be written in the form 

P{G) = llp{Xi,PaGiXi)). 
i 

That is, the prior decomposes into a product, with a term for each family 
in G. In other words the choices of the families for the different nodes are 
independent a priori. 

Next we consider the prior over parameters, P(9G | G). Here, the form of 
the prior varies depending on the type of parametric families we consider. In 
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Being Bayesian About Network Structure 5 

discrete networks, the standard assumption is a Dirichlet prior over ex,|u for 
each node Z, and each instantiation u to its parents (Heckerman, 1998). That 
is: 

P{^G\G) =        n       P{^Hn\G) 
i,ueVflZ(PaG(X,)) 

where the a;c;j|„ are the hyperparameters of the Dirichlet distribution for 9xj|u) 
and a^jju = EjfcCC;(jt|u. In Gaussian networks, we might use a Wishart pri- 
or (Heckerman and Geiger, 1995). For our purpose, we need only require that 
the prior satisfies two basic assumptions, as presented by Heckerman et al. 
(1995): 

— Global parameter independence: Let 9x,.|pac(x,) be the parameters spec- 
ifying the behavior of the variable X,- given the various instantiations to 
its parents. Then we require that 

^(eG|G) = n^(e;,,iPa,(x,)|G) (3) 

—   Parameter modularity: Let G and G' be two graphs in which Pa<5(X,) = 
PaG'(X,)=Uthen 

/'(ex,|u|G) = P(ex,|u|G') (4) 

Once we define the prior, we can examine the form of the posterior prob- 
ability. Using Bayes rule, we have that 

P(G|D)ocP(D|G)P(G). 

The term P{p \ G) is the marginal likelihood of the data given G, and is 
defined the integration over all possible parameter values for G. 

P{D\G) = jp{D\G,QG)P{^G\G)dQG 

The term P{D \ G,QG) is simply the probability of the data given a specific 
Bayesian network. When the data is complete, this term is simply a product 
of conditional probabilities. 

Using the above assumptions, one can show (see (Heckerman et al., 1995)): 

THEOREM 2.1.: IfD is complete andP{G) saft's^es parameter independence 
and parameter modularity, then 

P{D 1 G) = n /n^(^'H I PaG(^.)H,ex,|PaG(X0)^(ex,|Pao(X,))^ex,lPaG(X. 
i   •'    m 
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6 Friedman & KoUer 

If the prior also satisfies structure modularity, we can also conclude that 
posterior probability decomposes: 

P{G ID) oc P{D I G)P{G) = Y[score{Xu?SiG{Xi) | D) 
i 

where 

score{Xi,V\D) = p(X,,U) /lI^UM I »H>0x,|u)/'(ex,|u)rfex,|u 

2.2. BAYESIAN MODEL AVERAGING 

Recall that our goal is to compute the posterior probability of some feature 
/(G) over all possible graphs G. This is equal to: 

P{f\D) = J,f{G)P{G\D) 
G 

The problem, of course, is that the number of possible BN structures is super- 
exponential: 2^(" ^°^''\ where n is the number of variables. 

We can reduce this number by restrictmg attention to structures G where 
there is a bound k on the number of parents per node. This assumption, which 
we will make throughout this paper, is a fairly innocuous one. There are few 
applications in which very large families are called for, and there is rarely 
enough data to support robust parameter estimation for such families. From a 
more formal perspective, networks with very large families tend to have low 
score. Let ^k be the set of all graphs with indegree bounded by k. Note that 
the number of structures in Qk is still super-exponential: around 2''(*"'°S"). 

Thus, exhaustive enumeration over the set of possible BN structures is 
feasible only for tiny domains (4-5 nodes). One solution, proposed by several 
researchers (Madigan and Raftery, 1994; Madigan and York, 1995; Hecker- 
man et al., 1997), is to approximate this exhaustive enumeration by finding a 
set g of high scoring structures, and then estimating the relative mass of the 
structures in Q that contains /: 

This approach leaves open the question of how we construct §. The sim- 
plest approach is to use model selection to pick a single high-scoring struc- 
ture, and then use that as our approximation. If the amount of data is large 
relative to the size of the model, then the posterior will be sharply peaked 
around a single model, and this approximation is a reasonable one. However, 
as we discussed in the introduction, there are many interesting domains (e.g.. 
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Being Bayesian About Network Structure 7 

our biological application) where the amount of data is small relative to the 
size of the model. In this case, there is usually a large number of high-scoring 
models, so using a single model as our set ^ is a very poor approximation. 

A simple approach to finding a larger set is to record all the structures 
examined during the search, and return the high scoring ones. How^ever, the 
set of structures found in this manner is quite sensitive to the search procedure 
we use. For example, if we use greedy hill-climbing, then the set of structures 
we will collect will all be quite similar. Such a restricted set of candidates 
also show up when we consider multiple restarts of greedy hill-climbmg 
and beam-search. This is a serious problem since we run the risk of getting 
estimates of confidence that are based on a biased sample of structures. 

Madigan and Raftery (1994) propose an alternative approach called Oc- 
cam's window, which rejects models whose posterior probability is very low, 
as well as complex models whose posterior probability is not substantially 
better than a simpler model (one that contains a subset of the edges). These 
two principles allow them to prune the space of models considered, often to 
a number small enough to be exhaustively enumerated. Madigan and Raftery 
also provide a search procedure for finding these models. 

An alternative approach, proposed by Madigan and York (1995), is based 
on the use of Markov chain Monte Carlo (MCMC) simulation. In this case, we 
define a Markov Chain over the space of possible structures, whose stationary 
distribution is the posterior distribution P{G | D). We then generate a set of 
possible structures by doing a random walk in this Markov chain. Assuming 
that we continue this process until the chain mixes, we can hope to get a set 
of structures that is representative of the posterior. Related approaches have 
also been adopted by other researchers. Giudici and Green (1999) and Giudici 
et al. (2000) propose an MCMC approach aver junction trees — undirected 
graphical models that are decomposable, i.e., where graph is triangulated. 
Green (1995) and Giudici et al. (2000) also extend the MCMC methodology 
to cases where closed-form integration over parameters is infeasible, by defin- 
ing a reversible jump Markov Chain that traverses the space of parameters 
as well as structure. Madigan et al. (1996) provide an approach for MCM- 
C sampling over the space of PDAGs — equivalence classes over network 
structures. 

These MCMC solutions are the only approach that can, in principle, ap- 
proximate true Bayesian model averaging by sampling from the posterior 
over network structures. They have been demonstrated with success on a 
variety of small domains, typically with 4-14 variables. However, there are 
several issues that potentially limit its effectiveness for large domains involv- 
ing many variables. As we discussed, the space of network structures grows 
superexponentially with the number of variables. Therefore, the domain of 
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8 Friedman & Roller 

the MCMC traversal is enormous for all but the tiniest domains.' More im- 
portantly, the posterior distribution over structures is often quite peaked, with 
neighboring structures having very different scores. The reason is that even 
small perturbations to the structure — a removal of a single edge — can 
cause a huge reduction in score. Thus, the "posterior landscape" can be quite 
jagged, with high "peaks" separated by low "valleys". In such situations, 
MCMC is known to be slow to mix, requiring many samples to reach the pos- 
terior distribution. In Section 5 we provide experimental evidence indicating 
that these difficulties do, indeed, arise in practice. 

3. Closed form for known order 

In this section, we temporarily turn our attention to a somewhat easier prob- 
lem. Rather than perform model averaging over the space of all structures, we 
restrict attention to structures that are consistent with some known total order 
^. In other words, we restrict attention to structures G where if X,- € P&G{XJ) 

then i -< j. This assumption was a standard one in the early work on learning 
Bayesian networks from data (Cooper and Herskovits, 1992). 

3.1. COMPUTING MARGINAL LIKELIHOOD 

We first consider the problem of computing the probability of the data given 
the order: 

/>(D|X)= ^ PiG\^)P{D\G) (6) 

Note that this summation, although restricted to networks with bounded in- 
degree and consistent with -<, is still exponentially large: the number of such 
structures is still at least 2*"'°8". 

The key insight is that, when we restrict attention to structures consistent 
with a given order -<, the choice of family for one node places no additional 
constraints on the choice of family for another. Note that this property does 
not hold without the restriction on the order; for example, if we pick X,- to be 
a parent of X;, then Xj cannot in turn be a parent of X,-. 

Therefore, we can choose a structure G consistent with -< by choosing, 
independently, a family U for each node X,-. The parameter modularity as- 
sumption in Eq. (4) states that the choice of parameters for the family of X,- is 
independent of the choice of family for another family in the network. Hence, 
summing over possible graphs consistent with -< is equivalent to summing 
over possible choices of family for each node, each with its parameter prior. 

' For the experiments done so far, the larger domains (those with more than 7-8 variables) 
were typically associated with a large set of structural constraints limiting the set of possible 
structures. 

journal.tex; 18/07/2000; 2:56; p.8 



Being Bayesian About Network Structure V 

Given our constraint on the size of the fanaily, the possible parent sets for the 
node X,-is 

i/,-^ = {U:U^X,-,|U|<^}. 

where U ^ X, is defined to hold when all nodes in U precede Xj in ^. Let Ijk,^ 
be the set of structures in ^k consistent with -<. Given that, we have 

= n   S   score{Xi,V\D). (7) 

Intuitively, the equality states that we can sum over all networks consistent 
with -< by summing over the set of possible families for each node, and then 
multiplying the results for the different nodes. This transformation allows 
us to compute P{D |^) very efficiently. The expression on the right-hand 
side consists of a product with a term for each node X,-, each of which is 
a summation over all possible families for X,-. Given the bound k over the 
nxxmber of parents, the number of possible families for a node X,- is at most 
(^) < "*• Hence, the total cost of computing Eq. (7) is at most n-n'^ = n*+*. 

We note that the decomposition of Eq. (7) was first mentioned by Buntine 
(1991), but the ramifications for Bayesian model averaging were not pursued. 
The concept of Bayesian model averaging using a closed-form summation 
over an exponentially large set of structures was proposed (in a different 
setting) by Pereira and Singer (1999). 

The computation of P(£) |x) is useful in and of itself; as we show in the 
next section, computing the probability P{D |-^) is a key step in our MCMC 
algorithm. 

3.2. PROBABILITIES OF FEATURES 

For certain types of features /, we can use the technique of the previous 
section to compute, in closed form, the probability P{f\<,D) that / holds in 
a structure given the order and the data. 

In general, if /(■) is a feature. We want to compute 

We have just shown how to compute the denominator. The numerator is a sum 
over all structures that contain the feature and are consistent with the order: 

P{f,D\^)=   £  f{G)P{G\^)P{D\G) (8) 

The computation of this term depends on the specific type of feature /. 
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The simplest situation is when we want to compute the posterior probabil- 
ity of a particular choice of parents U. This in effect require us to sum over 
all graphs where PaG(X,) = U. In this case, we can apply the same closed 
form analysis to (8). The only difference is that we restrict llj^^ to be the 
singleton {U}. Since the terms that sum over the parents of X* for k^ j are 
not disturbed by this constraint, they cancel out from the equation. 

PROPOSITION 3.1.: 

A slightly more complex situation is when we want to compute the pos- 
terior probability of the feature /x,-»X;. denoting an edge X,- ->■ Xj. Again, we 
can apply the same closed form analysis to (8). The only difference is that we 
restrict llj^^ to consist only of subsets that contain X,-. 

PROPOSITION 3.2.: 

n(f       o n^    ^{uet4.^:U3X,}SCore(X,,U[D) 

Sue-n.^scorelXijUID) 

A somewhat more subtle computation is required to compute the posterior 
of /„M„ , the feature that denotes that X,- is in the Markov blanket of Xi, 

Xt~Xj 

which holds if G contains the edge Xi -> Xj, or the edge Xj -> X,-, or there is 
a variable Xjt such that both edges X,- -> Xk and Xj ->^ Xjt are in G. 

Assume, without loss of generality, that X,- precedes Xj in the order. In this 
case, X,- can be in X/s Markov blanket either if there is an edge from X,- to Xj, 
or if X,- and Xj are both parents of some third node X/. We have just shown how 
the first of these probabilities P{fxi^Xj I D, -<), can be computed in closed 
form. We can also easily compute the probability P(X,-,Xj G Pa<;(X/) | D, -<) 
that both X,- and Xj are parents of X/: we simply restrict ili^^ to families that 
contain both X,- and Xj. The key is to note that as the choice of families of 
different nodes are independent, these are all independent events. Hence, X,- 
and Xj are not in the same Markov blanket only if all of these events fail to 
occur. Thus, 

PROPOSITION 3.3.: 

l-{l-P{fx,^Xj\D,<))- Y[{l-P{Xi,XjePsiG{Xi)\D,^)) 
Xi^Xj 

Unfortunately, this approach cannot be used to compute the probability 
of arbitrary structural features. For example, we cannot compute the proba- 
bility that there exists some directed path from X,- to Xj, as we would have 

journal.tex; 18/07/2000; 2:56; p.10 



Being Bayesian About Network Stracture 11 

to consider all possible ways in which this path could manifest through our 
exponentially many structures. 

We can overcome this difficulty using a simple sampling approach. Eq. (9) 
provides us with a closed form expression for the exact posterior probability 
of the different possible families of the node X,-. We can therefore easily sam- 
ple entire networks from the posterior distribution given the order: we simply 
sample a family for each node, according to the distribution in Eq. (9). We can 
then use the sampled networks to evaluate any feature, such as the existence 
of a causal path from X,- to X^. 

4. MCMC methods 

In the previous section, we made the simplifying assumption that we were 
given a predetermined order. Although this assumption might be reasonable 
in certain cases, it is clearly too restrictive in domains where we have very 
little prior knowledge (e.g., our biology domain). We therefore want to con- 
sider structures consistent with all n! possible orders over BN nodes. Here, 
unfortunately, we have no elegant tricks that allow a closed form solution. 
Therefore, we provide a solution which uses our closed form solution of E- 
q. (7) as a subroutine in a Markov Chain Monte Carlo algorithm (Metropolis 
et al., 1953). This hybrid algorithm is a form of Rao-BlackweUized Monte 
Carlo sampling algorithm (Casella and Robert, 1996). Related approaches, 
called mixture estimators were proposed and analyzed by Gelfand and Smith 
(1990) and by Liu et al. (1994) (see discussion below). This approach is 
somewhat related to the work of Larranaga et al. (1996), which proposes 
the use of a genetic algorithm to search for a high-scoring order; there, how- 
ever, the score of an order is the score of a single high-scoring structure (as 
found by the K2 algorithm of Cooper and Herskovits (1992)), and the overall 
purpose is model selection rather than model averaging. Furthermore, genetic 
algorithms, unlike MCMC, are not guaranteed to generate samples from the 
posterior distribution. 

4.1. THE BASIC ALGORITHM 

We introduce a uniform prior over orders -<, and define P{G |-<) to be of 
the same nature as the priors we used in the previous section. It is important 
to note that the resulting prior over structures has a different form than our 
original prior over structures. For example, if we define P{G \^) to be uni- 
form, we have that P{G) is not uniform: graphs that are consistent with more 
orders are more likely. For example, a Naive Bayes graph is consistent with 
(n— 1)! orders, whereas any chain-structured graph is consistent with only 
one. As oiie consequence, our induced structure distribution is not hypothesis 
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equivalent (Heckerman et al., 1995), in that different network structures that 
are in the same equivalence class often have different priors. For example, the 
chain X -> y -> Z is associated with a unique order, whereas the equivalent 
structure X •f- F -> Z is associated with two orders, and is therefore twice as 
likely a priori. However, as Heckerman et al. observe, hypothesis equivalence 
is often too strong an assumption (e.g., in causal settings). They propose 
likelihood equivalence as a substitute, a property which clearly holds in our 
setting. 

In general, while this discrepancy in priors is unfortunate, it is important 
to see it in proportion. The standard priors over network structures are often 
used not because they are particularly well-motivated, but rather because they 
are simple and easy to work with. In fact, the ubiquitous uniform prior over 
structures is far from uniform over PDAGs (Markov equivalence classes) — 
PDAGs consistent with more structures have a higher induced prior probabil- 
ity. One can argue that, for causal discovery, a uniform prior over PDAGs is 
more appropriate; nevertheless, a uniform prior over networks is most often 
used for practical reasons. Finally, the prior induced over our networks does 
have some justification: one can argue that a structure which is consistent with 
more orders makes fewer assumptions about causal ordering, and is therefore 
more likely a priori (e.g., (Wallace et al., 1996)). 

We now construct a Markov chain fW, with state space 0 consisting of 
all n! orders -<; our construction will guarantee that fW has the stationary 
distribution P{^\D). We can then simulate this Markov chain, obtaining a 
sequence of samples ^ i,..., -^r • We can now approximate the expected value 
of any fiinction g(^) as: 

Specifically, we can let g(-<) be P{f H,£>) for some feature (edge) /. We can 
then compute g{^t) = P{f H«)0). as described in the previous section. 

It remains only to discuss the construction of the Markov chain. We use a 
standard Metropolis algorithm (Metropolis et al., 1953). We need to guarantee 
two things: 

— that the chain is reversible, i.e., P(x ^ ■<') = P(-<' i-4 -<); 

— that the stationary distribution of the chain is the desired posterior dis- 
tribution P(x| D). 

We accomplish this goal using a standard Metropolis sampling. For each 
order -<., we define di proposal probability q{^'\-<), which defines the proba- 
bility that the algorithm will "propose" a move from ^ to ^'. The algorithm 
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then accepts this move with probability 

mm 1 P{^'\D)qi^h') 
'\Pi^\D)q{^'\^) 

It is well known that the resulting chain is reversible and has the desired 
stationary distribution (Gilks et al, 1996). 

We consider several specific constructions for the proposal distribution, 
based on different neighborhoods in the space of orders. In one very sim- 
ple construction, we consider only operators that flip two nodes in the order 
(leaving all others unchanged): 

{h ...ij...ik...in) 1-^ [h ..• 4• • • ij.■ • in)- 

Another operator is "cutting the deck" in the order: 

{i\... ijijJrX ■ ■ ■ in) i-> {ij+i ■ ■ ■ iJi ■ • ■ ij)- 

In both cases, all possible operators are proposed with equal probability. We 
note that, in this case, the proposal probabilities g(-<'|-<) and p(-<H') are 
always equal, so the associated term cancels out in the acceptance probability. 

We note that these two types of operators are qualitatively very different. 
The "flip" operator takes much smaller steps in the space, and is therefore 
likely to mix much more slowly. However, any single step is substantially 
more efficient to compute (see below). In our implementation, we choose 
a flip operator with some probability p, and a cut operator with probability 
I — p. We then pick each of the possible instantiations uniformly (i.e., given 
that we have decided to cut, all n positions are equally likely). 

4.2. COMPUTATIONAL TRICKS 

Although the computation of the marginal likelihood is polynomial in n, it 
can stiU be quite expensive, especially for large networks and reasonable size 
k. We utilize several computational tricks for reducing the complexity of this 
computation. 

First, for each node X,-, we restrict attention to at most mp other nodes as 
possible parents (for some fixed mp). We select these mp nodes in advance, 
before any MCMC step, as follows: for each potential parent Xj, we compute 
the score of the single edge Xj -^ X,-; we then select the mp nodes Xj for which 
this score was highest. 

Second, for each node Xi, we precompute the score for some number mp 
of the highest-scoring families. Again, this procedure is executed once, at the 
very beginning of the process. The list of highest-scoring families is sorted 
in decreasing order; let ii be the score of the worst family in X,'s list. As 
we consider a particular order, we extract from the list all families consistent 
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with that order. We know that all families not in the list score no better than 
t-i. Thus, if the best family extracted fi-om the list is some factor Y better than 
£,-, we choose to restrict attention to the families extracted from the list, under 
the assumption that other families will have negligible effect relative to these 
high-scoring families. If the best family extracted is not that good, we do a 
fiill enumeration. 

When performing exhaustive enumeration, we prune families that aug- 
ment low-scoring families with low-scoring edges. Specifically, assume that 
for some family U, we have that score{Xi,\] \ D) is substantially lower than 
other families enumerated so far. In this case, families that extend U are 
likely to be even worse. More precisely, we define the incremental value 
of a parent Y for X,- to be its added value as a single parent: A(K;X,) = 
score{Xi,Y) — score(Xi). If we now have a family U such that, for all other 
possible parents Y, score{Xi,\])+A{Y;Xi) is lower than the best family found 
so far for X,-, we prune all extensions of U. 

Finally, we note that when we take a single MCMC step in the space, we 
can often preserve much of our computation. In particular, let ^ be an order 
and let -<' be the order obtained by flipping ij and 4. Now, consider the terms 
in Eq. (7); those terms corresponding to nodes i( in the order -< that precede 
ij or succeed ik do not change, as the set of potential parent sets llii^^ is the 
same. Furthermore, the terms for f/ that are between ij and 4 also have a lot 
in common — all parent sets U that contain neither ij nor 4 remain the same. 
Thus, we only need to subtract 

^ score{Xi,V \ D) 

and add 
^ score{Xi,V | D). 

By contrast, the "cut" operator requires that we recompute the entire summa- 
tion over families for each variable X,-. 

5. Experimental Results 

Evaluating the Sampling Process Our first goal is to evaluate the extent to 
which the sampling process reflects the result of true Bayesian model aver- 
aging. We first compared the estimates made by our MCMC sampling over 
orders to estimates given by the full Bayesian averaging over networks. We 
experimented on the nine-variable Flare dataset. We ran the MCMC sampler 
with a bum-in period of 1,000 steps and then sampled every 100 steps; we 
experimented with collecting 5, 20, and 50 samples. (We note that these pa- 
rameters are probably excessive, but they ensure that we are sampling very 
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Figure 1. Comparison of posterior probabilities using true posterior over orders (A:-axis) ver- 
sus order-MCMC (y-axis). The figures show Markov features and Edge features in the Hare 
dataset with 100 instances. 

close to the stationary probability of the process.) The results are shown in 
Figure 1. As we can see, the estimates are very robust. In fact, for Markov 
features even a sample of 5 orders gives a surprisingly decent estimate. This 
is due to the fact that a single sample of an order contains information about 
exponentially many possible structures. For edges we obviously need more 
samples, as edges that are not in the direction of the order necessarily have 
probability 0. With 20 and 50 samples we see a very close correlation between 
the MCMC estimate and the exact computation for both types of features. 

Mixing rate We then considered larger datasets, where exhaustive enumer- 
ation is not an option. For this purpose we used synthetic data generated 
from the Alarm BN (Beinlich et al., 1989), a network with 37 nodes. Here, 
our computational tricks are necessary. We used the following settings: k 
(max. number of parents in a family) = 3; mp (max. number of potential 
parents) = 20; mp (number of families cached) = 4000; and y (difference in 
score required in pruning) = 10. Note that y = 10 corresponds to a difference 
of 2^° in the posterior probability of the families. Different families have huge 
differences in score, so a difference of 2*^ in the posterior probability is not 
imcommon. 

Our first goal was the comparison of the mixing rate of the two MCMC 
samplers. For structure-MCMC, we used a bum in of 100,000 iterations and 
then sampled every 25,000 iterations. For order-MCMC, we used a bum in 
of 10,000 iterations and then sampled every 2,500 iterations. In both methods 
we collected a total of 50 samples per mn. We note that, computationally, 
stracture-MCMC is faster than order-MCMC. In our current implementation. 
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Figure 2. Plots of the progression of the MCMC runs. Each graph shows plots of 6 inde- 
pendent runs over AJarm with either 100, 500, and 1000 instances. The graph plot the score 
(log2(P(Z) I G)P{G)) or log2(P(D H)P(X))) of the "current" candidate (y-axis) for different 
iterations (;<:-axis) of the MCMC sampler. In each plot, three of the runs are seeded with the 
network found by greedy hill climbing search over network structures. The other three runs 
are seeded either by the empty network in the case of the structure-MCMC or a random order 
in the case of order-MCMC. 

generating a successor network is about an order of magnitude faster than 
generating a successor order. We therefore designed the runs in Figure 2 to 
take roughly the same amount of computation time. 
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One phenomenon that was quite clear was that order-MCMC runs mix 
much faster. That is, after a small number of iterations, these runs reached a 
"plateau" where successive samples had comparable scores. Runs started in 
different places (including random order and orders seeded from the results 
of a greedy-search model selection) rapidly reached the same plateau. On the 
other hand, MCMC runs over network structures reached very different levels 
of scores, even though they were run for a much larger number of iterations. 
Figure 2 illustrates this phenomenon for examples of Alarm with 100, 500, 
and 1000 instances. Note the substantial difference in the scale of the 3'-axis 
between the two sets of graphs. 

In the case of 100 instances, both MCMC samplers seemed to mix. Stracture- 
MCMC mixes after about 20,000-30,000 iterations, while order-MCMC mix- 
es after about 1,000-2,000 iterations. On the other hand, when we examine 
500 samples, order-MCMC converges to a high-scoring plateau, which we 
believe is the stationary distribution, within 10,000 iterations. By contrast, 
different runs of the structure-MCMC stayed in very different regions of the 
in the first 500,000 iterations. The situation is even worse in the case of 1,000 
instances. In this case, structure-MCMC started from an empty network does 
not reach the level of score achieved by the runs starting from the structure 
found by greedy hill climbing search. Moreover, these latter runs seem to 
fluctuate around the score of the initial seed, never exploring another region 
of the space. Note that different runs show differences of 100 - 500 bits. 
Thus, the sub-optimal runs sample from networks that are at least 2**^ less 
probable! 

Effects of Mixing This phenomenon has two explanations. Either the seed 
structure is the global optimum and the sampler is sampling from the pos- 
terior distribution, which is "centered" around the optimum; or the sampler 
is stuck in a local "hill" in the space of structures from which it cannot es- 
cape. This latter hypothesis is supported by the fact that runs starting at other 
structures (e.g., the empty network) take a very long time to reach similar 
level of scores, indicating that there is a very different part of the space on 
which stationary behavior is reached. We now provide further support for 
this second hypothesis. 

We first examine the posterior computed for different features in different 
runs. Figure 3 compares the posterior probability of Markov features assigned 
by different runs of structure-MCMC. Let us first consider the runs over 500 
instances. Here, although different runs give a similar probability estimate 
to most structural features, there are several features on which they differ 
radically. In particular, there are features that are assigned probability close 
to 1 by structures sampled from one run and probability close to 0 by those 
sampled from the other. While this behavior is less common in the runs seed- 
ed with the greedy structure, it occurs even there. This suggests that each of 
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Figure 3. Scatter plots that compare posterior probability of Markov features on the Alarm 
dataset, as determined by different runs of structure-MCMC. Each point corresponds to a 
single Markov feature; its x and y coordinates denote the posterior estimated by the two 
compared runs. The position of points is slightly randomly perturbed to visualize clusters 
of points in the same position. 

these runs (even runs that start at the same place) gets trapped in a different 
local neighborhood in the structure space. Somewhat surprisingly, a similar 
phenomenon appears to occur even in the case of 100 instances, where the 
runs appeared to mix. In this case, the overall correlation between the runs 
is, as we might expect, weaker: with 100 instances, there are many more 
high-scoring structures and therefore the variance of the sampling process 
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Figure 4. Scatter plots that compare posterior probability of Markov features on the A/arm 
domain as determined by different runs of order-MCMC. Each point corresponds to a single 
Markov feature; its x and y coordinates denote the posterior estimated by the greedy seeded 
run and a random seeded run respectively. 

is higher. However, we once again observe features which have probability 
close to 0 in one run and close to 1 in the other. These discrepancies are not 
as easily explained by the variance of the sampling process. Therefore, even 
for 100 instances, it is not clear that structure-MCMC mixes. 

By contrast, comparison of the predictions of different runs of order-MCMC 
are tightly correlated. Figure 4 compares two runs, one starting from an order 
consistent with the greedy structure and the other from a random order. We 
can see that the predictions are very similar, both for the small dataset and the 
larger one. This observation reaffirms our claim that these different runs are 
indeed sampling from similar distributions. That is, they are sampling from 
the true posterior. 

We believe that the difference in mixing rate is due to the smoother poste- 
rior landscape of the space of orders. In the space of networks, even a small 
perturbation to a network can lead to a huge difference in score. By contrast, 
the score of an order is a lot less sensitive to slight perturbations. For one, 
the score of each order is an aggregate of the scores of a very large set 
of structures; hence, differences in scores of individual networks can often 
cancel out. Furthermore, for most orders, we are likely to find a consistent 
structure which is not too bad a fit to the data; hence, an order is unlikely to 
be uniformly horrible. 

The disparity in mixing rates is more pronounced for larger datasets. The 
reason is quite clear: as the amount of data grows, the posterior landscape 
becomes "sharper" since the effect of a single change in the structure is 
amplified across many samples. As we discussed above, if our dataset is 
large enough, model selection is often a good approximation to model av- 
eraging. However, it is important to note that 500 instances for Alann are not 
enough to peak the posterior sharply enough that model selection is a reliable 
approach to discovering structure. We can see that by examining the poste- 
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Figure 6. Plots of the progression of the MCMC runs on the Boston-housing data set. Each 
graph shows plots of 4 independent runs. All the runs are seeded with the network found by 
searching over network structures. 

rior probabilities in Figure 4. We see that the posterior probability for most 
Markov features is fairly far from 0 or 1. As Markov features are invariant for 
all networks in the same Markov equivalence class (PDAG), this phenomenon 
indicates that there are several PDAGs that have high score given the data. By 
contrast, in the case of 1000 instances, we see that the probability of almost 
all features is clustered around 0 or 1, indicating that model selection is likely 
to return a fairly representative structure in this case. 

A second form of support for the non-mixing conjecture is obtained by 
considering an even smaller data set: the Boston-housing data set, from the 
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Figure 7. Scatter plots that compare posterior probability of Markov on the Boston-housing 
data set, as determined by different runs of structure-MCMC and order-MCMC. 
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Figure 8. Scatter plots that compare posterior probability of Markov on the Boston-housing 
data set, as determined by different runs of structure-MCMC and order-MCMC to the initial 
seed of the MCMC runs. The x-axis denotes whether the feature appears in the seed network: 
1 if it appear and 0 if does not. The y-axis denote the estimate of the posterior probability of 
the feature based on the MCMC sampling. 

UCI repository (Murphy and Aha, 1995), is a continuous domain with 14 
variables and 506 samples. Here, we considered linear Gaussian networks, 
and used a standard Wishart parameter prior. We started the stracture-MCMC 
on the stracture obtained from greedy hill-climbing search. We started the 
order-MCMC on an order consistent with that stracture. As usual, as shown 
in Figure 6(a), stracture-MCMC does not converge. However, as shown in 

journal.tex; 18/07/2000; 2:56; p.21 



22 Friedman & Roller 

Figure 6(b), the rans of order-MCMC are also somewhat more erratic, indi- 
cating a more jagged posterior landscape even over orders. In a way, this is not 
surprising, given the large number of instances and small domain. In Figure 7, 
we see that, as above, different runs of structure-MCMC lead to very different 
answers, whereas different runs of order-MCMC are very consistent. 

More interesting is the examination of the feature probabilities themselves. 
Figure 8(a) shows a comparison between the feature probabilities of structure- 
MCMC and those of the structure returned by greedy search, used as the 
starting point for the chain. We can see that most of the structures traversed 
by the MCMC search are very similar to the greedy seed. By contrast. Fig- 
ure 8(b) show that order-MCMC traverses a different region of the space, 
leading to very different estimates. It turns out that the structure found by 
the greedy search is suboptimal, but that structure-MCMC remains stuck in 
a local maximum around that point. By contrast, the better mixing properties 
of order-MCMC allow is to break out of this local maximum, and to reach 
a substantially higher-scoring region. Thus, even in cases where there is a 
dominant global maximum, order-MCMC can be a more robust approach 
than greedy hill-climbing, structure-MCMC, or their combination. 

Comparison of Estimates We now compare the estimates of the two ap- 
proaches on the Alarm data set. We deliberately chose to use the smaller data 
sets for two reasons: to allow structure-MCMC a better chance to mix, and 
to highlight the differences resulting from the different priors used in the two 
approaches. The results are shown in Figure 5. We see that, in general, the 
estimates of the two methods are not too far apart, although the posterior 
estimate of the structure-MCMC is usually larger. 

We attribute these discrepancies in the posterior to the different structure 
prior we employ in the order-MCMC sampler. To test this conjecture, in a way 
that decouples it from the effects of sampling, we chose to compare the exact 
posterior computed by summing over all orders to the posterior computed 
by summing over all equivalence classes of Bayesian networks (PDAGs). 
(I.e., we counted only a single representative network for each equivalence 
class.) Of course, in order to do the exact Bayesian computation we need 
to do an exhaustive enumeration of hypotheses. For orders, this enumeration 
is possible for as many as 10 variables, but for structures, we are limited 
to domains with 5-6 variables. We took two data sets — Vote and Fiare — 
from the UCI repository (Murphy and Aha, 1995) and selected five variables 
from each. We generated datasets of sizes 50 and 200, and computed the full 
Bayesian averaging posterior for these datasets using both methods. Figure 9 
compares the results for both datasets. We see that the two approaches are 
well correlated, but that the prior does have some effect. 

To gain a better understanding of the general effect of a structure prior, we 
examined the sensitivity of Bayesian model averaging to changes in the prior. 
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Figure 9. Comparison of posterior probabilities for different Markov features between full 
Bayesian averaging using: orders (.jc-axis) versus PDAGs (y-axis) for two UCI datasets (5 
variables each). 

Recall that our experiments use the MDL prior shown in Eq. (2), whether 
for P{G) (in structure-MCMC) or for P{G H) (in order-MCMC). We ran the 
same experiment, raising this prior to some power — 0, j, or 2. Note that a 
power of 0 corresponds to a uniform prior, over structures in the structure- 
MCMC case and over structures within an order in the order-MCMC case. 
By contrast, a power of 2 corresponds to an even more extreme penalty for 
large families. Figure 10 shows the comparison of the modified priors to 
the "standard" case. As we can expect, a stronger structure prior results in 
lower posterior for features while a uniform structure prior is more prone 
to adding edges and thus most features have higher posterior. Thus, we see 
that the results of a structure discovery algorithm are always sensitive to the 
structure prior, and that even two very reasonable (and common) priors can 
lead to very different resuhs. This effect is at least as large as the effect of 
using our order-based structure prior. Given that the choice of prior is often 
somewhat arbitrary, there is no reason to assume that our order-based prior is 
less reasonable than any other. 

Structure Reconstruction This phenomenon raises an obvious question: giv- 
en that the approaches give different results, which is better at reconstructing 
features of the generating model. To test this, we label Markov features in 
the Alarm domain as positive if they appear in the generating network and 
negative if they do not. We then use our posterior to try and distinguish "true" 
features from "false" ones: we pick a threshold t, and predict that the feature 
/ is "true" if P{f) > t. Clearly, as we vary the the value of t, we will get 
different sets of features. At each threshold value we can have two types 
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Figure 10. Comparison of the posterior of Markov features when we change the structure 
prior strength for AJarm with 100 instances. The top row compares the modified prior (y-axis) 
in order-MCMC against the standard prior (;c-axis). The middle row makes an analogous 
comparison for structure-MCMC. The bottom compares the modified prior with order (x-axis) 
against the modified prior with structures (y-axis). Each column corresponds to a different 
weighting of the prior, as denoted at the top of the column. 

of errors: false positives — positive features that are misclassified as nega- 
tive, and false negatives — negative features that are classified as positive. 
Different values of t achieve different tradeoffs between these two type of 
errors. Thus, for each method we can plot the tradeoff curve between the 
two types of errors. Note that, in most applications of structure discovery, 
we care more about false positives than about false negatives. For example, 
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Figure 11. Classification tradeoff curves for different methods. The jc-axis and the y-axis 
denote/a/se positive and false negative errors, respectively. The cirrve is achieved by different 
threshold values in the range [0,1]. Each curve corresponds to the prediction based on MCMC 
simulation with 50 samples collected every 200 and 1000 iterations in order and structure 
MCMC, respectively. 

in our biological application, false negatives are only to be expected — it is 
unrealistic to expect that we would detect all causal connections based on our 
limited data. However, false positives correspond to hypothesizing important 
biological connections spuriously. Thus, our main concern is with the left- 
hand-side of the tradeoff curve, the part where we have a small number of 
false positives. Within that region, we want to achieve the smallest possible 
number of false negatives. 
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Figure 12. Plots of the progression of the MCMC runs on the Genetics data set. Each graph 
shows plots of 4 independent runs. All the runs are seeded with the network found by searching 
over network structures. 

We computed such tradeoff curves for Alarm data set with 100 and 1000 
instances for two types of features: Markov features and Path features. The 
latter represent relations of the form "there is a directed path from X to Y" 
in the PDAG of the network structure. Directed paths in the PDAG are very 
meaningful: if we assume no hidden variables, they correspond to a situation 
where X causes Y. As discussed in Section 3, we cannot provide a closed 
form expression for the posterior of such a feature given an order. However, 
we can sample networks from the order, and estimate the feature relative to 
those. In our experiments, we sampled 10 networks from each order. 

Figure 11 displays tradeoff curves comparing order-MCMC, structure- 
MCMC, and the non-parametric Bootstrap approach of Friedman et al. (1999a), 
a non-Bayesian simulation approach to estimate "confidence" in features. As 
we can see, in all but one of the cases (path features with 100 instances), 
order-MCMC does as well or better than the other approaches, with marked 
gains in three cases. In particular, for t larger than 0.4, order-MCMC makes 
no false positive errors for Markov features on the 1000-instance data set. We 
believe that features it misses are due to weak interactions in the network that 
cannot be reliably learned from such a small data set. 

Application to Gene Expression Data As stated in the introduction our goal 
is to apply structure estimation methods for causal learning from gene expres- 
sion data. We tested our method on a relatively small genetic data set of Fried- 
man et al. (2000). This data set is derived from a larger data set of 5. cerevisiae 
cell-cycle measurements reported in Spellman et al. (1998). The data set con- 
tains 76 samples of 250 genes. Friedman et al. discretized each measurement 
into three values ("under-expressed", "normal", "over-expressed"). 

We applied the order based MCMC using seeding the runs with ordering 
consistent with the network found by the search procedure of Friedman et al. 
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Figure 13. Scatter plots that compare posterior probability of Markov and path features on the 
Genetics data set, as determined by different runs of structure-MCMC. 
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Figure 14. Classification tradeoff curves for different methods on the simulated Genetics data 
set. The x-axis and the y-axis denote ^Zie positive and false negative errors, respectively. The 
curve is achieved by different threshold values in the range [0,1].. 

(1999b). For these runs, we used: k (max. number of parents m a family) = 3; 
mp (max. number of potential parents) = 45; /n^ (number of families cached) 
= 4000; and y (difference in score required in pruning) = 10. We used a bum- 
in period of 4000 iterations, and then sampled every 400 iterations collecting 
50 samples in each run. 

Figure 12 shows the progression of runs of the two MCMC methods on 
this data. As we can see, the order based MCMC sampler mixes rapidly (af- 
ter few hundred iterations). On the other hand, the structure based MCMC 
sampler seems to be mixing only after 200,000 iterations. Figure 13 shows 
comparison of estimates from two different runs of the Order based MCMC 
sampler. As in other data sets, the estimates based on two different runs are 
in close agreement. 
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Since we want to use this tool for scientific discovery, we want to evaluate 
how well does Bayesian structure estimation performs in this domain. To 
do so we performed the following simulation experiments. We sampled 100 
instances from the network found by structure search on the genetics data. We 
then applied the order based MCMC sampler and the bootstrap approach and 
evaluated the success in reconstructing features of the generating network. 
Figure 14 shows the tradeoff between the two types of errors for these two 
methods in predicting Markov and path features . As we can see, the order 
based MCMC sampler clearly outperforms the bootstrap. 

We should stress that the simulation is based on a network that is probably 
simpler than the underlying structure (since we learned it from few sam- 
ples). Nonetheless, we view these results as an indication that using Bayesian 
estimates is more reliable in this domain. 

6. Discussion and future work 

We have presented a new approach for estimating the posterior distribution of 
network structures given a data set. Our approach is based on two main ideas. 
The first is a clean and computationally tractable expression for the posterior 
of the data given a known order over network variables. The second is Monte 
Carlo sampling algorithm over orders. We have shown that this approach 
mixes substantially faster than the standard MCMC algorithm that samples 
structures directly. 

Once we have generated a set of orders sampled from the posterior dis- 
tribution, we can use them in a variety of ways. As we have shown, we can 
estimate the probabilities of certain structural features — edge features or 
adjacency in Markov neighborhoods — directly in closed form for a giv- 
en order. For other structural features, we can estimate their probability by 
sampling network structures from each order, and testing for the presence or 
absence of the feature in each structure. 

We have shown that the estimates returned by our algorithm, using either 
of these two methods, are substantially more robust than those obtained from 
standard MCMC over structures. To some extent, if we ignore the different 
prior used in these two approaches, this phenomenon is due to the fact that 
mixture estimators have lower variance than estimators based on individual 
samples (Gelfand and Smith, 1990; Liu et al., 1994). More significantly, how- 
ever, we see that the results of MCMC over structures are substantially less 
reliable, as they are highly sensitive to the region of the space to which the 
Markov chain process happens to gravitate. 

We have also tested the efficacy of our algorithm for the task of recov- 
ering structural features which we know are present. We have shown that 
our algorithm is always more reliable at recovering features than MCMC 
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over structures, and in all but one case also more reliable than the bootstrap 
approach of Friedman et al. (1999a). 

We believe that this approach can be extended to deal with data sets where 
some of the data is missing, by extending the MCMC over orders with M- 
CMC over missing values, allowing us to average over both. If successfiil, 
we can use this combined MCMC algorithm for doing fiill Bayesian model 
averaging for prediction tasks as well. Finally, we plan to apply this algorithm 
in our biology domain, in order to try and understand the underlying structure 
of gene expression. 
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